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Generalized Taylor dispersion theory extends the basic long-time, asymptotic 
scheme of Taylor and Aris greatly beyond the class of rectilinear duct and channel 
flow dispersion problems originally addressed by them. This feature has rendered i t  
indispensable for studying flow and dispersion phenomena in porous media, 
chromatographic separation processes, heat transfer in cellular media, sedimentation 
of non-spherical Brownian particles, and transport of flexible clusters of interacting 
Brownian particles, to mention just a few examples of the broad class of non- 
unidirectional transport phenomena encompassed by this scheme. Moreover, 
generalized Taylor dispersion theory enjoys the attractive feature of conferring a 
unified paradigmatic structure upon the analysis of such apparently disparate 
physical problems. For each of the problems thus treated it provides an asymptotic, 
macroscale description of the original microscale transport process, being based 
upon a convective-diffusive ‘model’ problem characterized by a set of constant 
(position- and time-independent) phenomenological coefficients. 

The present contribution formally substantiates the scheme. This is accomplished 
by demonstrating that the coarse-grained (macroscale) transport ‘ model ’ equation 
leads to  a solution which accords asymptotically with the leading-order behaviour of 
the comparable solution of the exact (microscale) convective-diffusive problem 
underlying the transport process. It is also shown, contrary to current belief, that no 
systematic improvement in the asymptotic order of approximation is possible 
through the incorporation of higher-order gradient terms into the model constitutive 
equation for the coarse-grained flux. Moreover, the inherent difference between the 
present rigorous asymptotic scheme and the dispersion models resulting from 
GillSubramanian moment-gradient expansions is illuminated, thereby conclusively 
resolving a long-standing puzzle in longitudinal dispersion theory. 

1. Introduction 
Generalized Taylor dispersion theory provides a robust scheme for the study of 

dispersion phenomena arising from solute-velocity (and other phenomenological- 
coefficient) inhomogeneities in convectivediffusive transport processes. A funda- 
mental feature of this generalized theory is that it is not confined to unidirectional 
duct or channel flows. This contrasts with the original Taylor (1953, 1954)-Aris 
(1956) theory, as well as its subsequent extensions and varied applications by others 
(e.g. Gill & Sankarasubramanian 1970, 1971 ; Sankarasubramanian & Gill 1973; 
Doshi, Daiya & Gill 1978; Chatwin 1970, 1972; Chatwin & Sullivan 1982; Smith 
1981a, b ,  1985, 1987a, b ;  DeGance & Johns 1978a, b,  1985, to name a few), each one 
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of which continued to be addressed to this limited class of rectilinear duct and 
channel flows. 

Since its original paradigmatic presentation (Brenner 1980u, 1982u), additional 
physical elements have been incorporated into generalized Taylor dispersion theory, 
followed by succcssful application to a wide variety of transport problems. These 
include, inter ulia : ( i )  sedimentation of non-spherical particles (Brenner 1979, 1981) ; 
(i i)  dispersion accompanying solute flow through porous media (unconsolidated : 
Brenner 1980h; consolidated : Adler & Brenner 1984) ; (iii) surface transport (Dill & 
Brenner 1 9 8 2 ~ ;  Brenner & Adler 1982); (iv) direct ‘coupling’effects (Brenner 1982b), 
which later enabled study of the transport of flexible bodies and chains of interacting 
Brownian particles without having recourse to ad hoc preaveraging schemes (Brenner, 
Nadim & Haber 1987 ; Nadim & Brenner 1989) ; (v) time-periodic non-unidirectional 
flows (Dill & Brenner 1982b, 1983~) ;  (vi) cellular flows characterized by a vortical 
microscale flow with no net macroscale flow (Nadim, Cox & Brenner 1 9 8 6 ~ ;  Dungan 
& Brenner 1988); (vii) chemically reactive (Shapiro & Brenner 1986, 1987a, 1988) 
and aerosol filtration (Shapiro & Brenner 1989) systems, involving non-conserved 
Brownian tracers ; (viii) effects of finite-size particles applied to chromatographic 
separation (Brenner & Gaydos 1977,t Gajdos & Brenner 1978,t Mavrovouniotis & 
Brenner 1988); (ix) turbulent flow fields (Shapiro, Oron & Gutfinger 1989); and (x)  
dispersion of ‘momentum tracers’ in relation to the rheology of suspensions (Mauri 
& Brenner 1989). 

Thus, while owing its basic conceptual notions to the now classical Taylor-Aris 
reetilinear-flow dispersion problems, the scope of generalized Taylor dispersion 
theory greatly transcends that of the classical Taylor-Aris theory (and includes the 
latter as a special case). An attractive feature of the general scheme is that it confers 
a unified, indeed paradigmatic, structure upon the analysis of an apparently widely 
disparate class of physical problems. The starting point of generalized Taylor 
dispersion theory is the exact convective-diffusive description of the motion of 
a Brownian tracer particle through an abstract multidimensional phase space 
Q ,  @ qo, which consists respectively of a ‘local’ (usually bounded) subspace qo, 
composed of a set of coordinates q6qo,  and a ‘global’ unbounded subspace Q,, 
composed of a set of one-, two- or three-dimensional physical-space coordinates 
Q E Q,. This so-called ‘ microscale ’ description is obtained through the formulation 
of the appropriate convective-diffusive initial- and boundary-value physical problem 
for the conditional probability density function P(Q, q,  t (4‘) of finding the Brownian 
tracer a t  the location (Q ,q )  a t  time t > 0, provided that it was introduced a t  the 
position (0 ,q’)  a t  time t = 0. 

In  most applications one is not explicitly interested in the detailed stochastic 
tracer trajectory embodied in the exact microscale solution P(Q, q,  t I q’), but rather 
only in the coarser-grained, so-called ‘ macroscale ’ deficription furnished by the local- 
space average p(Q,  t 14’) of the latter (see (2.9)). Generalized Taylor dispersion theory 
seeks a long-time asymptotic approximation to P ,  obtained by matching its 
moments (cf. (3.3)) as t + ~  to the comparable moments of a ‘model’ probability 
density F ( Q , t ) ,  which in turn is assumed to satisfy a purely global, macroscale, 
convection-diffusion ‘ model ’ problem in Q-space with constant phenomenological 
coefficients (cf. $4). This matching determines the phenomenological invariants 
which serve to characterize the overall transport process a t  the macroscale. 

t Chronologically, these two papers actually preceded development of the generalized theory by 
several years. However, they already embodied several of the novel ideas ultimately incorporated 
into the general theory (Brenner 1 9 8 0 ~  1982a). 
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The main goals of the present study are twofold : 
(i) Substantiation of the asymptotic scheme. Our first goal is to provide generalized 

Taylor dispersion theory with a rigorous basis. Such substantiation (comparable to 
that  given by Aris 1956 for the original unidirectional tube-flow problem) has 
heretofore been lacking. Explicitly, as will be demonstrated, the usual formulation 
of the model problem allows matching of only the dominant asymptotic terms of the 
even-order moments; in particular, matching of the odd statistical moments is 
impossible, as too is matching of the higher-order terms appearing in the evcn 
moments. It thus appears desirable to investigate the asymptotic relation between 
the respective ‘exact ’ (P)  and the ‘model’ (P‘) macroscale probability densities. 
Specifically, an explicit long-time asymptotic expansion for P is requircd. Such an 
expansion has been previously obtained for the classical Taylor-Ark case by Chatwin 
(1970), who studied the approach to normality for unidirectional pipe flow by 
anticipating an asymptotic expansion in inverse powers of t i ,  in conjunction with an 
appropriate longitudinal similarity transformation. While his approach could be 
extended to  non-unidirectional flows, i t  would not serve our purpose of substantiating 
generalized Taylor dispersion theory, since his scheme is inherently different from the 
method-of-moments scheme underlying the present theory. 

(ii) Improvement of the scheme via moment-gradient expansions? In  the course of 
examining the foundations of Taylor dispersion theory - either classical or 
generalized -there naturally arises the question of the feasibility of improving the 
accuracy of the ‘purely global ’ model through the incorporation of higher-order 
gradient terms in the model constitutive equation for the flux density vector. The 
results of our analysis ultimately enable conclusive resolution of this long-standing 
matter. Previous studies of the latter issue were based upon ad hoc moment-gradient 
expansions (Gill & Sankarasubramanian 1970, 1971), aimed at obtaining asymptotic 
results of earlier temporal validity than those of Taylor and Aris. These original 
studies, confined exclusively to rectilinear duct flows, were recently extended by 
Nadim, Pagitsas & Brenner (1986b) to the abstract Q,  0 qo multidimensional phasc- 
space flows of generalized Taylor dispersion theory. The second principal goal of our 
analysis is thus to clarify the explicit relationship existing between the present 
asymptotic scheme and these moment-gradient expansions. This, in turn, will 
ultimately lead to resolution of a long-standing puzzle in longitudinal-dispersion 
theory. 

For subsequent reference, 5 2 reformulates the exact generic microscale transport 
equations governing P(Q,q , t lq ’ ) .  This is followed in $ 3  by derivation of the 
asymptotic expansion for P(Q, t 14’) as t +co. Section 4 examines the significance of 
the ‘purely global ’ macroscale model, in particular the feasibility of its improvement. 
In  § 5,  the explicit relationship existing between generalized Taylor dispersion theory 
and dispersion models resulting from moment-gradient expansions is clarified. These 
issues are explicitly illustrated within the context of Taylor’s original (1953, 1954) 
tube-flow problem ; yet the general conclusions emanating therefrom impact equally 
upon the non-unidirectional dispersion analysis embodied in generalized Taylor 
dispersion theory. 
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2. Problem formulation 
Employing standard generalized Taylor dispersion-theory notation (Brenner 

1982a), the conditional probability density function P(Q,  q ,  t I q’) satisfies the 
convective-diffusive continuity equation 

along with the respective global and local constitutive equations 

J =  Au(q)P-D(q) . vQP (2.2)  

and j = u(q)P-d(q) .V,P (2 -3 )  

for the comparable global and local flux-density vectors ( J J ) ,  wherein the 
phenomenological coefficients, namely the velocities ( A  U, u) and diffusivities (D, d)  
are all assumed to be known functions of q, independent of Q (and t ) .  Supplementing 
these equations we impose the global-space boundary conditions 

lQlffl(P, J , j )  = (O,O,O) aslQl +co (m = 0, 1, 2 ,... ), (2.4a, b, c )  

assuring that P decays faster than any finite power of lQl, together with the local- 
space zero-normal-flux boundary condition 

i i . j=  0 onaq,, (2 .5)  

with ri a unit normal on aqo, the boundary of q o ;  this expresses the impenetrability 
of the local-space boundary to solute transport. To these we adjoin the initial 
condition 

S(Q) 6(q-q’ )  for t = 0, ( 2 . 6 ~ )  
0 for t < 0 (2 .6b)  

(with S the Dirac delta function), formally expressing the fact that the tracer was 
introduced into the system a t  time t = 0 a t  the phase-space location (Q ,  q )  = (0,q’). 
In (2.2), 

P = {  

def 

W q )  = U(q) -O,  (2.7 1 

in which U denotes the constant velocity vector of our reference frame, which is left 
unspecified for the time being. 

Equations (2 .1)-(2.6)  serve to determine P uniquely. It is readily verified that this 
unique solution satisfies the normalization condition 

IQa l q 0 P d q d Q  = 1 (2.8) 

for all t > 0, where dq and d Q  are, respectively, the local- and global-sub-space 
‘volume’ elements. According to (2 .8)  the total probability of finding the tracer 
somewhere within the phase space is equal to  unity for all times ( t  > 0) following its 
introduction into the system.? 

t A more detailed account of the foregoing generic formulation can be found in Brenner (1980a, 
1982 a).  
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Of special interest in the subsequent analysis is the local-space-averaged 
conditional probability density 

whose long-time asymptotic expansion will be obtained in $3 without requiring 
detailed a priori knowledge of the integrand P .  

Observe for future reference that the probability density n( Q, q, t ) ,  which satisfies 
(2.1)-(2.5), and with (2.6) replaced by the general initial condition 

(2.10) 

can be calculated from knowledge of the Green function P via the superposition 
theorem (cf. Brenner 1980a) 

WQ, 4, t )  = 1 J p(Q - Q’, 4,  t I q’)f(Q‘, 4’) dq’dQ’. (2.11) 
Qm q o  

Similarly, the coarse-grained density 

(2.12) 

3. Asymptotic long-time expansion of P 
The Fourier transform, P ,  of P may be expressed as 

through power series expansion of the exponential factor followed by termwise 
integration. In the above, 

M m z J  1 Q”P(Q,q,tIq’)dqdQ (m = 0, 1, 2 ,...) (3.2) 
ern 90 

are the ‘total’ statistical polyadic moments of order m, and ( - ) ”  denotes m 
successive scalar multiplications. In Cartesian tensor terminology, om = oi, wl,. . . oi, 
and M m  = Mj,js.. .Im are each of rank m, and are completely symmetric in all their 
indices. Moreover, the ‘operator ’ ( - )” denotes m successive contractions on the 
tensor indices using the ‘nesting convention’ of Chapman & Cowling (1961); 
however, as all the operands throughout this paper will prove to be completely 
symmetric in all their tensor indices, this convention will prove irrelevant. 

Equation (3.2) may be interpreted as resulting from the sequential pair of 
successive integrations 
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wherein 
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Q"p(Q,q,tlq')dQ (m=O, 1 ,  2 > . . . )  (3.4) 
m 

are the 'local' statistical polyadic moments of order m. The latter satisfy the 
following sequence of q-space initial- and boundary-value problems, obtained 
(Brenner 1982a) via integrations over Q, of (2.1)-(2.6): 

a p m  -+VV, - j ,  at = [ m A U P , ~ l + m ( m - l ) D P , ~ z ] s ,  (3.5) 

in which j,,, = UP, - d.  V ,  P,, (3.6) 

A. jm = 0 on aqo, (3.7) 

and 
SmOS(q-q') fort = 0, 

for t < 0. 
(3.8a) 
(3 .8b)  

Here, S,, denotes the Kronecker delta, whereas [ 1" denotes a symmetrization operator 
such that for any Cartesian tensor of rank m, 

in which the summation extends over all m !  permutations of the indices. In (3.6), the 
polyadic jm  of rank m+ 1 represents the momenta1 flux density of P,. 

The scalar Po(q,tJq'), which represents the solution of the above system of 
equations for m = 0, is the conditional probability density of finding the tracer at  q 
at time t irrespective of its global-space location Q, given its initial introduction at 
t = 0 at  the local-space position 4'. It can be utilized as an appropriate Green 
function (Shapiro & Brenner 1987 b) ,  enabling P,(q, t 14') to be explicitly expressed 
in the form 

pm(q, t 1 4') = J1S Po(q, t--t1141) [mAu(ql)  Prn-l(q1, t ,  I 4') 
0 90 

+m(m-l )  D(q,)Prn-z(q,,tlIq')lsdq,dt,. (3.10) 

Hence, once Po is known, PI, Pz, . . . can be determined recursively by quadrature of the 
latter. Long-time asymptotic expansions for P, can be derived via the fundamental 
decomposition (Brenner 1982 a )  

P,(q, t 14') = P,"(Ci) +Pb7, t 1 q'), (3.11) 

of Po into respective time-independent and time-dependent portions, to which 
separate contributions the following normalization relations respectively apply : 

(3.12a, 6 )  
J 90 J 40 

Here, P: is a stationary local equilibrium distribution function, whereas p ( q ,  t 14') is 
a function that becomes exponentially small as t +a. The resulting expressions are 
considerably simplified by the choice 

J 90 

(3.13) 
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i.e. by choosing a frame of reference that moves with the long-time, time- 
independent, average global velocity U of the Brownian tracer (cf. (2.7)). 

A tedious calculation deriving from (3.10) and (3.11) (the results of which are 
summarized in Appendix A) yields a pair of asymptotic expansions for P, as t +a, 
according as m is even or odd. The following asymptotic expansions for the total 
moments (3.3) are readily obtained therefrom via integrations over qo while making 
use of the normalization relations (3.12): 

[(D*t)”-1(Af)+A$2)(q’)}r 
(2k) ! (2k)  ! 

M,,(t 14’) - -,IUD* t)kr+--- (k-  1)  ! 

4------ (2k)! [(D*t)k-2{DZ +D:A(q’)}t]s 
( k - 2 ) !  

[(D: t ) ,  (D* t)*-7S + O ( P 2 )  
(2k)! 

4- 2(k  - 3) ! 
(3.14) 

and 

[(D*t)*-lD: t1p+O(tk-l). (3.15) 
(2k+1)! 
(k-  l ) !  

M2k+1 (t  14’) ( 2 k f  k !  ’)! [(D*qkA(q’)p + 

(Here and throughout, the polyadic or tensorial order of the boldface sans serif 
coefficients A,, D:, DZ, etc. is as indicated by the subscript. We have not deemed it  
appropriate t o  be completely systematic in this regard, since consistency would have 
required abandoning the standard dispersion dyadic symbol D* in favour of D;. As 
usual, boldface italic symbols without a subscript, e.g. A ,  are understood to  be 
vectors, with unity implicitly understood in the subscript position.) 

p(o, t 1 4’) N [ 1 + i o  - A (4‘) + ( i ~ ) ~  ( )3 D: t - w - {Ail) + A!j2) (4’)) - o 
Substitution of (3.14) and (3.15) into (3.1) gives, upon summation, 

+ o4 ( - )4{D4* + [D: A(q’)r}  t + $(iw)s ( - )6 [( D: t)’]]” + . . .] exp ( - o- D*t -0). 

(3.16) 

The first term on the right-hand side of this expansion derives from the respective 
first- (leading)-order terms of M2* in (3.14); the next two terms are associated with 
the respective leading-order terms of M2k+l in (3.15); the remaining terms correspond 
to  the second-order O(tk-’) terms in M 2 k .  Subsequent higher-order terms, had they 
appeared explicitly, would have been contributed by the second-order terms in 
M , k + , ,  etc. 

For an n-dimensional global subspace, P may be recovered from via the inverse 
Fourier transform 

(3.17) 

Upon making use of the integral formulae 

where 

(-iw)*fio)exp(-io.Q)do = V;;j(Q), 
1 

(3.19) 



The above derivation corresponds to the limit process 
(3.20) 

t+co (Q fixed). (3.21) 

Nevertheless, when one forms the explicit Q-space derivatives VZ, the resulting 
asymptotic expansion remains valid for the more general limit process 

t+m, Q = Q t u  (Qfixed), (3.22) 

provided that a <%. (For a > ;  the leading asymptotic behaviour is no longer 
Gaussian, and the derivation breaks down. In  principle, an alternative asymptotic 
approximation could be sought that would be valid for a > 5. However, the following 
discussion proves this case to  be practically insignificant.) 

For a < $ the exponential factor in (3.20) tends to unity as t+m for all finite Q,  
whereas for a > f it  tends to zero exponentially rapidly for any finite Q .  
Consequently, the appropriate limit process is 

Q = Qti. 
For this limit process, (3.20) yields 

1 
p(Q,  t I 4’) - { 1 - 8 [A(q’) - VQ + D:( - )’ V$] 

1 +t [{A:” +Ai2’ (4’)) ( . ) 2  Vb +{D: + [D:A(q’)r} ( *)‘Vb 

(3.23) 

(3.24) 

which represents an asymptotic expansion proceeding in inverse powers of ti. The 4’- 
independent Gaussian leading-order O( 1)-term derives from the respective leading- 
order terms of the even moments. The next terms, of O ( t t ) ,  are contributed by the 
respective leading-order terms of the odd moments. The O(t- l )  terms are associated 
exclusively with the second-order terms of M2k. Consequently, it may be anticipated 
that the next terms in (3.24) will be of O(t-i) ,  and will be contributed by the second- 
order terms in M2k+l, etc. 

A similar analysis can be pursued to obtain the asymptotic expansion for 
P ( Q ,  q,  t 14’). Thus, analogous to (3.1), we have for the Fourier transform of P,  

Introduce into the right-hand side of the latter the respective asymptotic expansions 
(A 1) and (A 2) for P,, and P2k+l given in Appendix A, and use the analogue of (3.17) 
in conjunction with (3.18) and (3.19) to  obtain 

(3.26) 
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after inversion. This corresponds collectively to an equilibrium or steady-state 
distribution PF(q) in the local space, together with a Gaussian distribution in the 
global space. Only the dominant, O(1)-term in brackets is independent of the initial 
local-space coordinate q‘. Similar remarks to those made following (3.24), pertaining 
to the respective sources of the various orders-of-magnitude of the neglected terms, 
apply here as well. 

Subsequent discussion (cf. $5) makes use of a comparison between the predictions 
of the present scheme and results already existing in the longitudinal dispersion 
literature. Thus, while generalized Taylor dispersion theory is of much broader scope 
and has been successfully applied to a variety of other, non-unidirectional flow cases, 
we nevertheless find it useful to illustrate the explicit results of the foregoing 
derivation within the context of the classical Taylor-Aris problem, namely that of 
solute dispersion in circular Poiseuille flow. 

Consider the dispersion process for a pointsize Brownian tracer particle moving 
within a circular cylindrical tube of radius a. The conditional probability density 
P = P(r,  9, z ,  t 1 r’, W ) ,  with ( r ,  6, z )  cylindrical polar coordinates, is governed by the 
system of equations 

ap aP [;lr( 1 a2P a ~ ]  
at az r2 aa2 ax2 
-+AU(r)--D -- r- +--+- = 0 ,  

_ -  - 0  a t r = a ,  
ar 

ap 

(3.27) 

(3.28) 

r-’a(r-r’) 6(9-9’) 6(z) for t = 0, ( 3 . 3 0 ~ )  

for t < 0, (3.30b) 
P(r ,  6 ,  z,  t 1 r’, 9’) = 

AU(r) = 2U(I-$)-P (3.31) 

Here, D and are given constants, whereas the constant 7 is to be determined during 
the course of the solution scheme. In the notation of $2 the following equivalences 
are readily established (cf. Brenner 1980a) : 

and 

(3.32) 

where (el ,  e,, e , )  are orthonormal unit vectors in the circular cylindrical coordinate 
system. 

The various polyadic coefficients required in the asymptotic expansion (3.24) for 
P have been calculated; they are tabulated in Appendix B. Following substitution 
into (3.24) and non-dimensionalization of the independent varibles according t o  the 

(3.33) 
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one obtains 

wherein (Abramowitz 6 Stegun 1968) 

and 
O2 a2 K = -  
D*D' 

(3.34) 

(3.35) 

(3.36) 

Equation (3.34) constitutes the Green function required in (2.13). Thus, for those 
circumstances in which the initial distribution is uniform over the cross-section of the 
tube, and localized a t  z = 0, we substitute (na2)-1t3(z) for the generic initial 
distribution f(Q', 4') appearing therein to obtain 

In the limit D/Uu 4 1 we obtain K - 48 (cf. (B 5 )  of Appendix B), whence the 
resulting expression agrees identically with equation (4.8) of Chatwin (1970). As 
mentioned in the Introduction, Chatwin's result was, however, obtained via a 
completely different scheme. 

4. The 'purely global' model 
Generalized Taylor dispersion theory suggests (cf. Brenner 1 9 8 0 ~ )  that P ( Q ,  t 14') 

can be approximated for t -+a by the 4'-independent field F(Q, t ) ,  representing the 
solution of the following ' model problem ' : 

(4.2) 

(4.3) 

J'=-D'.V p', Q wherein 

and satisfying the boundary condition 

lQlm(P', J ' )  = (0, 0 )  as lQl+a (m = 0, 1, 2 ,...) 

and initial condition 
p' ~ { a ( Q )  for t = 0, 

0 for t < 0. 
(4.4a) 
(4.4b) 

The initial- and boundary-value problem posed by these equations constitutes the 
'purely global' counterpart of the problem posed by (2.1)-(2.6). 
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It is easy to show that the purely global moments M;,(t), defined as 

107 

are exactly given by the expressions 

according as m is even or odd. Thus, the choice 

(4-7)  D‘ = D* 

of phenomenological coefficient in the constitutive equation (4.2) assures asymptotic 
matching of Mi, with the leading term of Mzk in (3.14).  Neither the higher-order 
terms of the even moments nor any of the odd moments (cf. (3.15)) can be matched 
by the purely global model; yet (3.24) et seq. demonstrate that  this is irrelevant 
insofar as the dominant, leading-order behaviour of the coarse-grained density P is 
concerned. 

It is seemingly natural to  seek to  improve the formulation of the model problem 
so as to make the global model density P ( Q , t )  approximate the asymptotic 
behaviour of P(Q,tIq’) to  higher orders (cf. $5) .  Towards this end one should 
attempt to remove the q‘ dependence from the higher-order terms in P appearing in 
(3.24),  while simultaneously modifying the model constitutive equation (4.2) for S. 

The former goal is apparently achieved by transforming the global variable from 
Q to a new coordinate Q(l) (Q 1 q’),  defined as 

with A as given in (A 3 ) .  This choice corresponds to a frame of reference whose origin 
coincides with the long-time-average global tracer location (as opposed to the former 
frame, which only travels with the average global velocity of the tracer). 

The total moments in the new frame of reference are 

and [(D*t)*-lD: tl” + O(tk-1). 
(2k+ l ) !  

Mi?+, - (k-l)! (4.10) 

(In particular, M:) - exp ( t  14’). Since, by definition, the first-order total moment 
represents the average tracer location within the global subspace, this asymptotic 
behaviour is in accordance with the interpretation given above to the transformation 
(4.8).) Thus, q’ is eliminated from the respective leading-order terms of M$!+l. 

If the model constitutive equation (4 .2)  is now modified to the form 

fl” = - D’ . V p  P I ) ’  + D;( * )2VQrn VQ“’ P I ) - ,  (4.11) 
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the following asymptotic expressions result : 

and [(D't)k-l D;t]s+O(tk--'). 
( 2 k + 1 ) !  
(k-i)! Mi?;, - (4.13) 

These will be asymptotically matched to the corresponding terms in M!&' and M&+l, 
respectively, provided that one chooses the phenomenological coefficients in the 
model constitutive equation (4.11) such that 

D' = D* and Dj = 0:. (4.14a, b )  

It is impossible to remove the q' dependence from the respective second-order 
terms in M,, and M,,,,. Thus, the addition of higher-order gradient terms to the 
model constitutive equation for S results in additional terms in P' of the same order 
as the (&dependent) error terms in P .  Hence, the introduction of higher-order global 
gradient terms cannot lead to  a consistent improvement of the approximation. 
Furthermore, even the apparent improvement associated with the above modi- 
fications (4.8) and (4.11) is of doubtful merit since a q' dependence of the model 
density P' is implicit in the specific choice of reference frame. As such, the resulting 
model problem is not purely global in structure. The net effect of this is that each 
different (local-space) initial-value problem arising from the same overall con- 
servation, constitutive and boundary-value formulation needs to be treated as a 
distinctly new problem in its own right. In such circumstances, where the asymptotic 
behaviour is dependent upon initial, local-space conditions, i t  is legitimate to 
question whether Taylor dispersion theory offers any real computational or 
conceptual advantages over the exact formulation of the original problem posed by 

In summary, although the simplest global model suggested by generalized Taylor 
dispersion theory enables only asymptotic matching of the leading orders of the even 
moments, MZk and Mi,, respectively, the resulting global model density P' 
approximates the exact, local-space-averaged density P correctly to leading order. 
No modification of the model is possible that will improve the asymptotic 
approximation of P by P' while simultaneously retaining a genuinely purely global 
model of the transport phenomena. 

(2.1 )-( 2.6). 

5. Relation to moment-gradient expansions 
It appears desirable t o  clarify the relation between the present results and 

dispersion models deriving from moment-gradient expansions. These models, 
originally pioneered by Gill & Sankarasubramanian (1970, 1971) in the context of 
unidirectional tube flows, were recently applied more generally by Nadim et al. 
(1986b) to flows in the abstract Q, Q qo phase space. The cornerstone underlying 
these schemes is the assumed existence of a 'separation-of-variables ' expansion of 
the form 

00 

p ( Q ,  4,  t 14') = Fk(q, t 14') ( *  )'V;P(Q, t I q'), (5.1) 
k-0 
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where, in the course of the derivation, the k-adic coefficients I., are explicitly 
expressed in terms of 4 and M, ( j  = 0,1,. . ., k). Integration of (2.1) over q,, jointly 
with boundary condition (2.5), then leads to  the local-space-averaged problem 

and 

aP -+v,.J= 0 
at 

(5.3) 

in which the l-adic coefficients X,(t I q’) possess the functional dependence indicated by 
their arguments. The local-space-averaged global flux vector J is obtained from its 
definition in terms of the 9,-space quadrature of J (cf. (2.2)) as 

together with the assumed moment-gradient expansion (5.1). 
Gill & Sankarasubramanian (1970, 1971) focus on obtaining an ‘exact’ solution of 

(5.2) and (5.3) valid for all t > 0. Towards this goal they truncate the series (5.3) 
immediately after the diffusion term X2-V ,P ,  while retaining the dyadic X, as a 
time-dependent phenomenological coefficient. Unlike the present formulation for a 
single Brownian tracer, their solution does not explicitly exhibit the indicated 
dependence of X,(t 1 q’) upon the initial condition embodied in q’. The latter is instead 
built into their development, which is restricted to the ‘product’ class, 

f(Q9 q )  =fi(Q)fi(q), (5.5) 

of initial conditions (cf. (2.10)). For the sake of simplicity we select for comparison 
purposes an initial condition in which the solute is uniformly distributed over the 
tube cross-section and localized at  z = 0, for which circumstances the asymptotic 
expansion (3.37) has already been obtained. 

The comparable result of Gill & Sankarasubramanian (1971), recast in the present 

(cf. Appendix B). Comparison with (3.37) reveals that whereas both results agree to 
leading order as T+CO, they disagree insofar as the correction terms are concerned. 
Explicitly, the O(T-+)-term is missing altogether from the latter result -while, of the 
O(T-’)-terms, only the one involving Z@) (6) appears. Our resolution of this 
discrepancy serves to illuminate the inherent difference between the respective two 
schemes. 

DeGance & Johns (1978a, b )  provide a somewhat more rigorous basis for the 
(otherwise ad hoc) moment-gradient expansion in the case of unidirectional duct 
flows. They prove that the first m + 1 Hermite total moments of p(m) (the latter being 
the solution of (5.2) and (5.3), with (5.3) truncated a t  1 = m-1) coincide with the 
corresponding moments of P for all t > 0.t  (Similarly, truncation of (5.1) beyond 

Since P is determined by the totality of its moments (Reichl 1980), this result is insufficient 
to assure the accuracy of the approximation P(m) associated with a specific finite truncation at  1 = 
m -  1. Furthermore, it is well known (cf. Pawula 1967) that retention of any finite number of terms 
1 2 2 in (5.3) can result in a physically unacceptable negative probability density P(‘“) < 0 for some 
combinations of parameters. 
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k = m assures equality of the first m + 1 local Hermite moments of the corresponding 
approximation P(") with those of P, respectively, for all t > 0.) This criterion of 
equality is inherently different from that of our present scheme, which involves 
asymptotic matching for t +oo of the leading orders of all the moments. 

The origin of the difference between the respective asymptotic expansions of 
n(l;, 7 )  is now clear. The solution of Gill & Sankarasubramanian gives M, correctly 
for all t > 0. For t+m this, in turn, assures matching of the dominant asymptotic 
behaviour for all M,, (and, concomitantly, that of P and 17 too). This accounts for 
the agreement of the respective leadinF-order terms of (3.37) and (5.6). As is evident 
from the present derivation, the 0(r-3) first-order correction term originates in the 
leading asymptotic behaviour of the odd moments M2k+l,  and thus cannot be 
accounted for by the Gill & Sankarasubramanian asymptotic approximation scheme. 
From the O(~-l)-terms, we find in (5.6) only -2(')(l;)/720~, whose source is M,. The 
remaining O(~-l)-terms appear for the first time in M, and M,, respectively, and 
hence are not to be found in (5.6). 

We now turn to yet another aspect of the dispersion models resulting from 
moment-gradient expansions. As t-too the coefficients of (5.3) are known (cf. Gill & 
Sankarasubramanian 1970, 1971 ; Nadim et al. 1986b) to approach (using the present 
notation and frame of reference) the respective q'-independent constant limits 

XI = 0, X, = D*, X, = D:, ... (5.7) 

exponentially rapidly. Consequently, i t  was implied (Chstwin 1972 ; Nadim et al. 
1986 b )  that the accuracy of the purely global macrotransport model P' for P could 
be improved through replacement of the original constitutive equation (4.2) by its 
' non-truncated generalization ' 

W 

J' = ( -  1)2xlc,1( .)LVp., 
2-0 

where the constant phenomenological 1-adic coefficients X: are the respective long- 
time limits of X ,  (1  = 0, 1,2, .  . .). This proposal appears to conflict with the conclusion 
drawn in 94. 

In order to clarify this point we consider the cumulant expansion 

in what follows. Perform the Fourier transform of the macrotransport equation (5.2) 
and make use of the proposed gradient expansion (5.3) together with the identity 
inverse to (3.19) to obtain 

(5.10) 

Introduction of the cumulant expansion (5.9) into the latter shows, provided the 
moment-gradient expansion exists, that  its coefficients are related to the cumulants 
via the expressions 

(m = 1, 2, 3 ,... ). (5.11) 
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Utilize the relations existing between the cumulants and the total moments 
(Abramowitz & Stegun 1968) together with the foregoing asymptotic results (3.14) 
and (3.15) to obtain 

Thus, according to (5.11), the coefficients X ,  do indeed attain their respective 
invariant limits, namely (5.7), exponentially rapidly. However, the probability 
density P depends upon the cumulants themselves, and not merely upon their 
asymptotic growth rates ; accordingly, the effect of the O( l),  q’-dependent terms 
appearing in the respective right-hand sides of (5.12) does not vanish in the limit as 
t +a. This leads us to reiterate our main conclusion, namely that no systematic 
improvement of the purely global model P’ can be achieved through the addition of 
higher-order gradient terms to the constitutive equation for J ’ .  

A further comment seems warranted since it appears paradoxical that the higher- 
order invariants X t  can be defined, and nevertheless not serve to improve the 
approximation of P by P .  In resolving this paradox i t  should be borne in mind that 
these invariants are based on the asymptotic rates of change of the cumulants (and, 
hence, of the total moments). As such, they represent a Lagrangian description of the 
movement of the Brownian tracer in the global subspace. On the other hand, the 
proposed incorporation of these invariants as phenomenological coefficients in 
the constitutive relation governing the purely global model represents a Eulerian 
description of the macrotransport process. The irreconcilability of these alternative 
descriptions, as embodied in our negative conclusions, represents yet another 
manifestation of the fact that the Lagrangian view represents the more fundamental 
of the two in the present macrotransport context; that is, whereas Eulerian and 
Lagrangian views are completely interchangeable in the exact, microtransport 
description of the transport process, they are no longer formally equivalent in the 
approximate or coarse-grained, macrotransport description of this same process. In 
our opinion, failure to appreciate the ramifications of this fundamental disparity is 
ubiquitous in the non-equilibrium statistical-mechanics literature concerned with 
coarse-graining schemes ! 

I.F. is grateful to the Bantrell Foundation for a postdoctoral fellowship 
administered by the Massachusetts Institute of Technology. H. B. was supported by 
the National Science Foundation and the US Army Research Office. 
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Appendix A. Long-time asymptotic expansions of P, 

following expansions of the local moments : 
Even orders (m = 2 k ) :  

Tedious calculations deriving from (3 .10)  and (3 .11)  eventually lead to the 

( 2 k ) !  [(D*t)k-l{AL1)+Aiz) (q’)+B(q) A(q’) 
(2k)  ! 

( k - l ) !  

[(D*t)k-Z{Dq*+D: A(q’)+D,*B(q)}t]S 
(Zk) ! + B,(q))ls +- ( k - 2 ) !  

[(D* q - 3  (0; t)”]” + O ( t 4  
(2k )  ! 

2(k - 3 )  ! 
( k  = 0, I ,  2 ,  ... 

[B(q)(D:t)2(D*t)k-3]”+O(tk-2) ( k  = 0, 1 ,  2 ,  ...). 
(2k+  l ) !  + 
2( k -  3 )  ! 



The indicia1 terms A z k + l ( q ' )  are functions solely of 4'. Moreover, any term 
appearing in Pzk  or which corresponds to a negative power of t should be 
replaced by an exponentially small term. Inductive arguments may be invoked to 
straightforwardly verify the preceding results. 

It is advantageous in applications to  express each of the coefficients of the 
preceding asymptotic expansions in an alternative form as as to  enable its 
calculation without explicit a priori knowledge of the time- and initial-condition- 
dependent function p ( q , t (  q') appearing in (3 .11) .  Towards this end, the fields Pr (q) ,  
B(q), B,(q) and B,(q) will be represented as the respective solutions of a sequence of 
appropriate boundary-value problems. These, in turn, are formulated as follows : (i) 
substitute the asymptotic expansion (A 1) or (A 2 )  for P, into both the differential 
equation (3 .5)  and boundary condition (3 .7) ,  while neglecting terms known to become 
exponentially small for t +GO ; (ii) complete the formulation by making use of the 
normalization relations (3.12) in conjunction with the respective definitions of the 
various fields given above. 

This scheme results in the following sequence of boundary-value problems defining 
each of the four requisite fields: 

and 

ii.(uP?-d.V,P,") = 0 on aq0, 

I q o P r d q =  1 ;  

(ii) B(q):  
V,*[uP," B-d*V,(P," B)] = AUP,", 

P:ri.d.V,B= 0 on aq,, 

and /40Pp Bdq = 0 ;  

(iii) B,(q) : 

and 

(A 12a) 

(A 12b) 

(A 12c) 

(A 13a) 

(A 13b) 

(A 13c) 

(A 14a) 

(A 14b) 

(A 14c) 
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(iv) B,(q): 

and 

P: i i -d .V ,B ,  = 0 on aq0, (A 156) 

IqO P," B, dq = 0.  (A 15c) 

It is an immediate corollary of the foregoing formulation that the coefficients D*, 
D:, and Dz, respectively defined by (A 5), (A 9) and (A l l ) ,  may be calculated 
without first determining p ( q ,  t 14'). 

We now turn to express A(q'), A?) and A r )  (4'). Following Smith (1981 b) ,  observe 
that for t - tm 

t t s, (Po-P,") dt, = j- P ( q ,  t ,  14') dt, - P,"(q) a(q 14') +exp (A 16) 
0 

(cf. (3.11) et sep.). Upon integrating over the initial- and boundary-value problem 
posed for Po, (3.5)-(3.8) for rn = 0, and neglecting terms that are known to  become 
exponentially small as t - tm, the function a(q(q' )  is found t o  satisfy the following 
system of equations : 

V,. [UP; U- d.  V, (P; u)]  = 6(q-q') - P,"(q), (A 17a) 

P," i*d .V ,a  = 0 on aq0 (A 17 b) 

and 

Upon changing the integration order in (A 3) we thereby obtain 

(A 17c) 

In a similar manner, from (A 2)  for k = 0 one obtains for t+m 

s.' [P,-P,"(A +B)1 dt, - p m  al(qI4') +exp, (A 19) 

where a, is governed by the boundary-value problem 

V, .  [Up," a, - d.V,(P: a,)]  = -P,"(A +B)  + AUP? a (A 20a) 

and ~ P ; i i . d . V , a ,  = 0 on aq0, (A 20 b )  

which determines a, only to within an arbitrary additive constant vector. (This 
indeterminacy has no effect in the sequel.) 

Making use of the definitions of a1 and AU of (A 19), (2.7) and (3.13), respectively, 
and of the expression (3.10) for P, in conjunction with the decomposition (3.1 1)  for 
Po,  it is readily verified through comparison with the definitions (A 7) and (A 8) that 

Ai1'+A!2'(q') = j. ~ , " ~ ~ l ~ r ~ ~ ~ ~ , ~ ~ l ~ ~ l l ~ ' ~ + ~ ~ ~ , ~ ~ ~ ~ ,  Iq')1Sdq,. (A 21) 
40 

(Since, in all of the expressions for the various moments, Ail) and Ai2) appear only 
in the combination Af)+Ai2', no need exists for explicit expressions for each 
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separately.) Thus, the required asymptotic expansion is rendered independent of 
explicit knowledge of p(q,  t 14’). 

In  those special circumstances where the local-space velocity field u is derivable 
from a scalar potential, namely 

u(q) = - d * V , E ,  

an eigenfunction series representation of p(q ,  t I q‘) of the form (Dill 

00 

P ( q >  t 14‘) = exp vw‘)1 z X , ( d ) X , ( q )  exp (42 4 
n-1 

can be utilized to readily verify the pair of ‘reciprocal’ relations 

4 7 ’ )  = B(q’), 

W ( 4 ’ )  = B,(q’), 
together with the identity 

(A 22) 
& Brenner 19833) 

I n  applications, (A 22) occurs most commonly in those situations for which u = 0 
iden ti cally . 

Appendix B. The asymptotic expansion of the classical Taylor problem 
B.l .  E x p w i m  (3.24) 

The expansion of Po(~,19, t l~’ ,8’)  into an eigenfunction series in terms of Bessel 
functions of the first kind in r and trigonometric functions in I9 was given by Aris 
(1956). Thus, in principle, the coefficients of the asymptotic expansion for P could be 
evaluatcd by direct substitution followed by quadratures of (A 3)-(A 11). However, 
it proves far more convenient to use the alternative procedure embodied in (A 12)- 
(A 25). Straightforward calculations then yield 

1 
Pom=Ka2‘ 

D* = eiD*, D* = D+-. 8 2  a2 

480 ’ 

t Since u = 0 in the present example, the requirement (A 22) is trivially satisfied. 
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U 3  a4 
0: = e,3D,*, D: = --. 

2880D2 ’ 

41 O4a6 
2580480 7 ’ 0: = e:D:, D,* = - 

The functions B, 
of Chatwin (1970). 

B, and B, coincide with the respective functions g(l), g@) and g(,) 

B.2. Gill & Sankarasubramnian’s (1971) expansion, (5.6) 

The comparable result of Gill & Sankarasubramanian (1971) for this case (their 
equations (57) and (58), recast in the present notation) is 

where 
rt 

As t-trm we obtain (their (1970) equation (23) ,  again in present notation) 

6 - D*t+L+exp. (B 14) 

Substitute the latter into (B 12) and transform from ( z , t )  to the non-dimensional 
variables ( C , T )  (cf. (3.33)) to obtain 

The time-independent quantity L could, in principle, be evaluated by summing an 
appropriate infinite series of Bessel functions and their eigenvalues. It is, however, 
much simpler to effect its calculation via the alternative methods of Appendix A by 
making use of relevant results of Nadim et al. (1986b), namely 

t 

r = j;X2(t1Ip.)dt1= -I’J [F,(q,t,lq’)AU(q)-F,(q,t,Iq’)D(q)lsdqdt, 
0 40 

Integration of (3.10) over 40 while using the normalization condition (3.12) shows 
that the first term on the right-hand side of the latter equation is +,M,(tlq’). 
Similarly, integration of (3.5), in conjunction with the boundary condition (3.7), 
shows the remaining term to be iM:(t 14’). Hence, 

5 = +(Mz-M1M1) .  (B 17) 
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In  the present example, = e,"g and M, = e,"M,,,, where 

00 

M ,  = r zm If@, t)  dz = (2D*t)(m+1)/2 pn(<, 7 )  d<. 
J -m J --m 

Use of the long-time asymptotic expansion (3.37) of fi(c.7) thereby yields 

5 - D*t+Af)+exp. (B 19) 

Comparison with (B 14) reveals that L = @I. Substitution of the explicit formula 
(B 6) for the latter constant into (B 15) thereby yields (5.6). 
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